Bridge measurement of $\mathrm{R}, \mathrm{L}, \mathrm{C}$

LEVEL-2:

1. Ans: (c)

Hint: Instrument sensitivity $=\frac{\text { Change in deflection }}{\text { Change in resis tan ce }}$

$$
\begin{aligned}
& =\frac{3}{6} \mathrm{~mm} / \Omega \\
& =0.5 \mathrm{~mm} / \mathrm{ohm}
\end{aligned}
$$

2. Ans: (d)

Hint:With R_{x} disconnected, the full scale current

$$
I_{m}=\frac{E}{R_{1}+R_{m}}
$$

Given that the new current $\mathrm{I}_{\text {New }}=\mathrm{SI}_{\mathrm{m}} \rightarrow(1)$
The New current can be obtained as

$$
I_{T}=\frac{E}{R_{1}+\frac{R_{m} R_{x}}{R_{m}+R_{x}}}
$$

From current division rule,

$$
\begin{aligned}
I_{\text {New }} & =\frac{E}{R_{1}+\frac{R_{m} R_{x}}{R_{m}+R_{x}}}\left[\frac{R_{x}}{R_{m}+R_{x}}\right] \\
& =\frac{E R_{x}}{R_{1}\left(R_{m}+R_{x}\right)+R_{m} R_{x}}
\end{aligned}
$$

From (1)

$$
\begin{gathered}
\frac{E R_{x}}{R_{1}\left(R_{m}+R_{x}\right)+R_{m} R_{x}}=\frac{R_{x}}{R_{x}+R_{p}}\left[\frac{E}{R_{1}+R_{m}}\right] \\
R_{x}\left(R_{1}+R_{m}\right)+R_{p}\left(R_{1}+R_{m}\right)=R_{1} R_{m}+R_{1} R_{x}+R_{m} R_{x} \\
R_{p}=\frac{R_{1} R_{m}}{R_{1}+R_{m}}
\end{gathered}
$$

3. Ans: (d)

Hint:Given data $Z_{1}=450 \Omega$

$$
Z_{2}=(300-j 600) \Omega
$$

$$
\begin{gathered}
Z_{3}=(200+j 100) \Omega \\
\text { Under balance } \quad Z_{1} Z_{3}=Z_{2} Z_{4} \\
450(200+j 100)=(300-j 600) Z_{4} \\
\frac{450 \times(200+j 100)(300+j 600)}{(300)^{2}+(600)^{2}}=\quad Z_{4} \\
\frac{450 \times 10^{4}(2+j)(3+6 j)}{450 \times 10^{3}}=Z_{4} \\
10[6+15 j-6]=Z_{4} \\
\therefore Z_{4}=(0+j 150) \Omega
\end{gathered}
$$

4. Ans: (d)

Hint:The given bridge is wein's bridge.
under balance

$$
R_{4}\left[R_{1} \frac{1}{j \omega C_{1}}\right]=R_{2}\left[\frac{R_{3}}{j \omega C_{3} R_{3}+1}\right]
$$

$R_{1} R_{4}\left(j \omega C_{3} R_{3}+1\right)+\frac{R_{4}}{j \omega C_{1}}\left[j \omega C_{3} R_{3}+1\right]=R_{2} R_{3}$
Compare real and imaginary terms

$$
\begin{aligned}
\omega R_{1} R_{4} C_{3} R_{3}-\frac{R_{4}}{\omega C_{1}} & =0 \\
\omega & =\frac{1}{\sqrt{\mathrm{C}_{1} \mathrm{C}_{3} \mathrm{R}_{1} \mathrm{R}_{3}}}
\end{aligned}
$$

If $\mathrm{R}_{1}=\mathrm{R}_{3}=\mathrm{R}$ and $\mathrm{C}_{1}=\mathrm{C}_{3}=\mathrm{C}$

$$
\omega=\frac{1}{\mathrm{RC}}
$$

And real part,

$$
\begin{aligned}
& \mathrm{R}_{1} \mathrm{R}_{4}+\frac{\mathrm{R}_{4} \mathrm{C}_{3} \mathrm{R}_{3}}{\mathrm{C}_{1}}=\mathrm{R}_{2} \mathrm{R}_{3} \\
\Rightarrow & \mathrm{R}_{4}\left[\mathrm{R}_{1}+\frac{\mathrm{C}_{3} \mathrm{R}_{3}}{\mathrm{C}_{1}}\right]=\mathrm{R}_{2} \mathrm{R}_{3}
\end{aligned}
$$

If $\mathrm{R}_{1}=\mathrm{R}_{3}$ and $\mathrm{C}_{1}=\mathrm{C}_{3}$

$$
\begin{aligned}
\mathrm{R}_{4}\left[\mathrm{R}_{3}+\mathrm{R}_{3}\right] & =\mathrm{R}_{2} \mathrm{R}_{3} \\
\Rightarrow \mathrm{R}_{2} & =2 \mathrm{R}_{4}
\end{aligned}
$$

5. Ans: (a)

Hint:under balanced condition,

$$
\begin{gathered}
Z_{x}\left[\frac{4000}{j \omega 0.05 \mu \times 4000+1}\right]=2000 \times 750 \\
Z_{x}=\frac{750}{2}\left(1+j \omega \times 10^{-3}\right) \\
R_{x}+j \omega L_{x}=375+j 75 \times 10^{-3} \omega
\end{gathered}
$$

Compare real and imaginary terms

$$
\mathrm{R}_{\mathrm{x}}=375 \Omega \text { and } \mathrm{L}_{\mathrm{x}}=75 \mathrm{mH}
$$

6. Ans: (d)

Hint:The given bridge is unbalanced bridge

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{b}}=10 \times \frac{10}{30}=3.33 \mathrm{~V} \\
& \mathrm{~V}_{\mathrm{a}}=20 \times \frac{10}{30}=6.66 \mathrm{~V}
\end{aligned}
$$

Voltmeter reading $=\mathrm{V}_{\mathrm{a}}-\mathrm{V}_{\mathrm{b}}$

$$
\begin{aligned}
& =6.66-3.33 \\
& =3.33 \mathrm{~V}
\end{aligned}
$$

10. Ans: (b)

Given $\frac{X_{C}}{R}=1$
Volt meter reading $=\mathrm{V}_{\mathrm{ab}}=\mathrm{V}_{\mathrm{a}}-\mathrm{V}_{\mathrm{b}}$

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{a}}=\frac{10 \times \mathrm{R}}{\mathrm{R}+\mathrm{R}}=5 \mathrm{~V} \\
& V_{b}=\frac{10 \times X_{C}}{X_{C}+R}=\frac{10}{1+\frac{R}{X_{C}}}=\frac{10}{2}=5 \mathrm{~V}
\end{aligned}
$$

\therefore Voltmeter reading $\mathrm{V}_{\mathrm{ab}}=0 \mathrm{~V}$
11. Ans: (a)

Sol: $\mathrm{V}_{\mathrm{ab}}=\mathrm{V}_{\mathrm{a}}-\mathrm{V}_{\mathrm{b}}=\frac{30 \times 10}{30}-\frac{30 \times 2}{10}=4$
Energy stored in capacitor $=\frac{1}{2} \mathrm{CV}_{\mathrm{ab}}^{2}=\frac{1}{2} \times 1 \times 10^{-6} \times 4^{2}=8 \mu \mathrm{~J}$
12. Ans: (d)

Sol : \quad Take $\mathrm{I}=\mathrm{I}_{1}+\mathrm{I}_{2}$
$\mathrm{I}_{1}=$ inner loop current and $\mathrm{I}_{2}=$ outer loop current from KVL.
$-\mathrm{V}_{\mathrm{S}}+2+2 \times 10^{3} \mathrm{I}_{2}=0 \rightarrow(1)$
and $-\mathrm{V}_{\mathrm{S}}+5 \times 10^{3} \mathrm{I}_{1}=0 \rightarrow(2)$
Given $\mathrm{V}_{0}=0$, therefore voltage across $4 \mathrm{~K} \Omega$ is equal to voltage across $2 \mathrm{~K} \Omega$.
$4 \times 10^{3} \mathrm{I}_{1}=2 \times 10^{3} \mathrm{I}_{2}$
$\mathrm{I}_{2}=2 \mathrm{I}_{1} \rightarrow(3)$
By solving (1), (2) and (3)
$\mathrm{I}_{1}=2 \mathrm{~mA}, \mathrm{I}_{2}=4 \mathrm{~mA}$
$\therefore \mathrm{I}=6 \mathrm{~mA}$
13. Ans: (a)

Sol :
Given $\mathrm{V}_{1}=\sqrt{2} \cos 1000 \mathrm{t} \quad \mathrm{V}$

$$
\mathrm{V}_{2}=2 \cos \left(1000+45^{\circ}\right) \text { and } \mathrm{V}_{\mathrm{d}}=0
$$

V_{1} is the voltage across the resistor $\mathrm{R}=100 \Omega$, since $\mathrm{V}_{\mathrm{d}}=0$

$$
\therefore \mathrm{I}_{2}=\frac{\mathrm{V}_{1}}{\mathrm{R}}=\frac{\sqrt{2} \cos 1000 \mathrm{t}}{100}
$$

V_{2} is the voltage across the impedance Zx .

$$
\begin{aligned}
& \mathrm{V}_{2}=2 \operatorname{Cos}\left(1000 \mathrm{t}+45^{\circ}\right) \\
& \mathrm{I}_{2}=\sqrt{2} \times 10^{-2} \cos 1000 \mathrm{t}
\end{aligned}
$$

Here V_{2} leads the current I_{2} with the phase angle 45°.
Hence the element is inductor with some resistance.

$$
\begin{aligned}
\text { Now } \mathrm{R} & =\frac{\mathrm{V}_{2}}{\mathrm{I}_{2}} \cos 45^{\circ} \\
& =\frac{2}{\sqrt{2} \times 10^{-2}} \times \frac{1}{\sqrt{2}}=100 \Omega \\
\text { and } \mathrm{X}_{\mathrm{L}} & =\frac{\mathrm{V}_{2}}{\mathrm{I}_{2}} \sin 45^{\circ}=\frac{2}{\sqrt{2} \times 10^{-2}} \times \frac{1}{\sqrt{2}} \\
\mathrm{X}_{\mathrm{L}}=100 \Omega \text { and } \mathrm{L} & =\frac{100}{1000}=100 \mathrm{mH}
\end{aligned}
$$

14. Ans: (c)

Sol :
The voltage across R_{2} is $=\frac{E R_{2}}{R_{1}+R_{2}}=\frac{E}{2}$
Therefore voltage across R_{1} is also $\frac{\mathrm{E}}{2}$.

$$
\begin{aligned}
\text { Now } \frac{E}{2} & =\mathrm{IR}_{3}+\mathrm{V} \\
\therefore \mathrm{I} & =\frac{\mathrm{E}-2 \mathrm{~V}}{2 R} \\
\text { and } \frac{\mathrm{E}}{2} & =\mathrm{IR}_{4} \\
\frac{\mathrm{E}}{2} & =\left(\frac{\mathrm{E}-2 \mathrm{~V}}{2 \mathrm{R}}\right)(\mathrm{R}+\Delta \mathrm{R}) \\
\mathrm{R}+\Delta \mathrm{R} & =\frac{\mathrm{ER}}{\mathrm{E}-2 \mathrm{~V}} \\
\therefore \Delta \mathrm{R} & =\frac{2 \mathrm{VR}}{\mathrm{E}-2 \mathrm{~V}}
\end{aligned}
$$

15. Ans: (b)

Sol :

$$
\begin{aligned}
& \text { Under balanced condition } \\
& \begin{array}{l}
\left(\mathrm{X}_{\mathrm{C}} \| 10 \mathrm{~K} \Omega\right) \mathrm{Z}=500 \times 1 \mathrm{~K} \Omega \\
\frac{10^{4} \mathrm{Z}}{1+\mathrm{j} \omega 100 \times 10^{-9} \times 10^{4}}=5 \times 10^{5} \\
\quad \mathrm{Z}=50\left[1+\mathrm{j} \omega 50 \times 10^{-3}\right] \\
\quad=50+\mathrm{j} \omega 50 \times 10^{-3}
\end{array}
\end{aligned}
$$

16.

Ans: (d)
Sol: Voltage across the $500 \mathrm{k} \Omega$ resistor is exactly 10 V
Sensitivity of voltmeter $20 \mathrm{k} \Omega / \mathrm{V}$
The readings indicated on its 50 V and 5 V range?
Voltage across V_{AB} by voltage division rule

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{AB}}=\frac{500}{500+500} \times 20 \\
& \mathrm{~V}_{\mathrm{AB}}=10 \mathrm{~V}
\end{aligned}
$$

Reading indicated on 50 V range is

$$
\begin{aligned}
& \mathrm{R}_{\mathrm{m}}=\mathrm{S} \times \text { voltage range } \\
& \mathrm{R}_{\mathrm{m}}=20 \times 10^{3} \times 50=1000 \mathrm{k} \Omega
\end{aligned}
$$

R_{m} connected across 'AB'

$$
\mathrm{R}_{\mathrm{eq}}=\frac{500 \times 1000}{500+1000}=333.3 \Omega
$$

$$
\mathrm{V}=20 \times \frac{333.3}{500+333.3}=8 \mathrm{~V}
$$

Reading indicated on ' 5 V ' range is

$$
\begin{aligned}
& \mathrm{R}_{\mathrm{m}}=\mathrm{S} \times \text { voltage range } \\
& \mathrm{R}_{\mathrm{m}}=20 \times 10^{3} \times 5=100 \mathrm{k} \Omega
\end{aligned}
$$

$$
\begin{aligned}
\mathrm{R}_{\mathrm{eq}} & =\frac{500 \times 100}{500+100}=83.33 \Omega \\
\mathrm{~V} & =20 \times \frac{83.33}{500+83.33}=2.86 \mathrm{~V}
\end{aligned}
$$

17. Ans (a)

Sol: $\quad 41=\mathrm{E} /(0.5 \mathrm{M} \Omega+10 \mathrm{~K} \Omega)$ and

$$
51=\mathrm{E} /\left(\mathrm{R}_{\mathrm{m}}+10 \mathrm{~K} \Omega\right)
$$

Take ratio then R_{m} value is $0.4 \mathrm{M} \Omega$
18.

Ans: (a)
Sol: Each arm having a guaranteed accuracy error of $\pm 0.5 \%$
Standard arm has a guaranteed accuracy of $\pm 1 \%$
Ratio arms of are both set at 1000Ω
Bridge is balanced with standard arm adjusted to determine the upper and lower limits of unknown resistance?
Value of unknown resistance $R=\left(\frac{\mathrm{P}}{\mathrm{Q}}\right) \times \mathrm{S}$

$$
\begin{aligned}
& =\frac{1000}{1000} \times 3154 \\
& =3154 \Omega
\end{aligned}
$$

\% error in determination of R

$$
\begin{aligned}
\mathrm{R} & =\frac{1000(\pm 0.5 \%)}{1000(\pm 0.5 \%)} \times 3154(\pm 1 \%) \\
\mathrm{R} & =3154 \pm[0.5 \%+0.5 \%+1 \%] \\
& =3154 \pm 2 \%
\end{aligned}
$$

The upper and lower limits of unknown resistance is 3091 to 3217Ω
19.

Ans: (a)
Sol:
Given that

$$
\begin{array}{ll}
\mathrm{P}=1 \mathrm{k} \Omega, & \mathrm{R}=1 \mathrm{k} \Omega \\
\mathrm{~S}=5 \mathrm{k} \Omega & \mathrm{G}=100 \Omega
\end{array}
$$

Thevenine voltage $\mathrm{E}_{0}=24 \mathrm{mV}$

$$
\mathrm{I}_{\mathrm{g}}=13.6 \mu \mathrm{~A}
$$

All the best

From circuit find thevenin equivalent circuit.

$$
\begin{aligned}
& \mathrm{R}_{0}=\frac{\mathrm{RS}}{\mathrm{R}+\mathrm{S}}+\frac{\mathrm{PQ}}{\mathrm{P}+\mathrm{Q}} \\
& \mathrm{I}_{0}=\frac{\mathrm{E}_{0}}{\mathrm{R}_{0}+\mathrm{G}} \\
& \mathrm{R}_{0}+\mathrm{G}=\frac{24 \times 10^{-3}}{13.6 \times 10^{-6}}=1764.70 \\
& \mathrm{R}_{0}=1764.7-100=1665 \Omega \\
& \mathrm{R}_{0}=\frac{1000 \times 5000}{1000+5000}+\frac{1000 \times \mathrm{Q}}{1000+\mathrm{Q}} \\
& \frac{1000 \mathrm{Q}}{1000+\mathrm{Q}}=8317 \\
& \mathrm{Q}=4.95 \mathrm{k} \Omega
\end{aligned}
$$

20.

Ans: (a)
Sol: $S=100.03 \times 10^{6} \Omega$

$$
\begin{array}{ll}
\mathrm{p}=100.31 \Omega & \mathrm{P}=100.24 \\
\mathrm{q}=200 \Omega & \mathrm{Q}=200 \Omega \\
\mathrm{r}=100 \times 10^{-6} \Omega & \\
\mathrm{R}=\frac{\mathrm{P}}{\mathrm{Q}} \cdot \mathrm{~S}+\frac{\mathrm{qr}}{\mathrm{p}+\mathrm{q}+\mathrm{r}}\left[\frac{\mathrm{P}}{\mathrm{Q}}-\frac{\mathrm{p}}{\mathrm{q}}\right]
\end{array}
$$

$$
\begin{aligned}
& \mathrm{R}=\frac{100.24}{200} \times 100.03 \times 10^{-6}+\frac{200 \times 100 \times 10^{-6}}{100.31+200+100 \times 10^{-6}}\left[\frac{100.24}{200}-\frac{100.31}{200}\right] \\
& \mathrm{R}=49.97 \times 10^{-6} \Omega
\end{aligned}
$$

21.

Ans: Given that
Sol: $\quad C=600 \mathrm{pF}$

$$
\mathrm{V}=250 \mathrm{~V} \quad v=92 \mathrm{~V}
$$

$$
\text { Insulation resistance } \begin{aligned}
\mathrm{R} & =\frac{0.43 \times \mathrm{t}}{\mathrm{Clog}_{10}\left(\frac{\mathrm{~V}}{\mathrm{v}}\right)} \\
\mathrm{R} & =\frac{0.434 \times 60}{600 \times 10^{-12} \times \log _{10}\left(\frac{250}{92}\right)} \\
\mathrm{R} & =9.99 \times 10^{10} \\
\mathrm{R} & =100 \times 10^{9} \Omega
\end{aligned}
$$

